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Abstract

A general technique is presented for identifying the extreme points

of a convex set C of log-convex f*mctions and the extreme points of

certain types of its convex subsets • For K one these subsets, it is

shown that ext IC s K n ext C even though K is not an extremal subset of C.
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1. Introduction. The identification of the extreme points of a

convex set is an important problem in mathematics. (~ie reason for iden-

tifying the extreme points is that they are , in many instances , the basic

building blocks for the convex set . For instance, when the convex set

is a compact subset of a locally convex space it is the closed convex

hull of its extreme points (ICrein-Milman Theorem) and if in addition the

set is metrizable , any point in it has an integral representation in

:1 terms of the extreme points (ChoqueVs Theorem) .

Recently , Langberg, Ledn , Lynch , and Pr reafter , referred

to as L3P) (1978, 1979) have identifieá~the extreme points for certain

types of convex compact sets qf pr9bability distributions which occur in
• ~~~ 

iUé~. ~~~~~~~~~~~~
reliability thoery . L3P (1979) identifj’~he extreme points for the set

~1r~

of discrete decreasing failure rate distributionsA and , without appealing

to choquet ’s Theorem, give an explicit representation for these distri-

butions in tei,~is of the extreme points.) In L3P (1978) , they identify
--~~~~~~ 4

the extreme points for .the -dec~’eising failure rate distributions in the

continuous case .(~~ t turns out that techniques e iployed in this last

paper can be used to identify the extre!ne points for certain convex sets

of log-convex functions. The purpose of this pcper is to present these
• results.~~

In Section 2 , so~n~ preliminary material is presented and the main

result - Theorem 2.1, which identifies the extreme points - is stated.

The proof of Theorem 2.1 is given in Section 4. In Section 3, certain

types of convex subsets of log-ccnvex function s are examined and their

extreme points are identified.

_ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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2. Preliminaries and the Main Result. Throughout let ta, bi

(_w S a c b �.) be a fixed interval. Denote the space of continuous

functions on ±a, bi by C±a , bi and denote the space of finite signed

measures on ta , bi by C*±a, bi, which is the dual of C±a , bl. Let L

denote the set of functions which are on ±a , bi, i.e., those

functions x(.) which are positive on ±a , bi and for which log x( ’) is

convex on [a, b]. For a fixed constant c, let

C s {x e L; x(a) ~ c and x is continuous at a and b}.

It is well known that L is closed (under pointwise convergence) and convex

(see Roberts and Varberg , 1973 , Section 13) ; thus C is a closed convex

subset of C(a , b] with the usual norm.

For each x £ L and t E (a , b], let X(t) — log x(t) . Since X is

convex, its first and second order derivatives, X and X , exist almost

everywhere (a.e.) on [a, bi. Let

— {t c (a , b] : X” exists at

Denote the Lebesque measure by m and let

Cx a C: m(t a E~ : a’ S t � b’ and X”(t) ( 6) > 0

for ell a S a’ b ’ S b  and all 6 0).

For each x a C, let 1(x) denote an interval of positive length

contained in (a , bJ such that for some > 0, X” > d,~ a.e. on 1(x) . If

no such interval exists , let 1(x) - 0, the empty set . Note that if

x £ C n E°, then 1(x) • 0 and for some 6,~ > 0 we have X” > 6,~ a.e. on 1(x) .

________________
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Recall that a point x in a convex set K is an extreme point of K if

• x ey+ (l-e )z,0 < u < l ,and y, zcKiap ly thaty— z .x. Theset

of extreme points of a convex set K will be denoted by ext K. In the

following theorem, the proof of which is given in Section 4 , the extreme

points of C are identified.

Th.orem 2.l. e x t C — E .

Remark. Since ext C - E, ext C is dense (under uniform convergence

on [a, b]) in C. This can be seen as follows. Let x a C. Then K is

convex on [a, b) . For each positive integer n , partition [a, b] into a

countable nuaber of intervals each of length less than 1/n and denote the

set of endpoints of these intervals by {t~}. Let X~(t) — X~(t~) if t • t’~ for

some i and linear between endpoints of an interval in the partition .

Then X~~is convex wtd x~~— e  aE s i n c e X~~= 0 a . e .  on [a, b]. Since

+ x uniformly on [a b] E - ext C is dense in C.

The proof of Theorem 2 • 1 and the examples in the next section re-

quire the technical lemea given below .

We need the following notation . For the interval (a’, b ’]

(a c g’ c b ’ c b) , let c~
2
~~a’, b’] denote the set of functions on [a’, b’]

which have continuous second derivatives . The norm on C~
2
~ [a ’, b ’] is

given by IIX I I[ae , b ’)  
• max {J x ( t ) I ,  Ix ’(t)I, Ix”(t) I : t a (a ’ , b ’]}. The

• subipace of C~
2
~ (a ’, b’] of functions which vanish at a’ and b ’ and whose

first and second order derivatives also vanish at a’ and b ’ will be

denoted by 42) (.~, b’]. The set of all functions in C[a , bJ that vanish

off [a’, b’] and have restrictions to (a ’ , b ’] which are in 42) [a~, b ’]

will be denoted by V(a ’ , b ’]. For t c ln 2 , let c(t) a in (2 -
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Leiaa 2.2. Let X be a convex function on (a, b] which has its

second derivative a.e. uniformly bounded away from zero on some subinter-

val [a’, b ’] (a’ c b’) of [a, bi. Let {A~} be a sequence of functions

defined on (a, b] which are in V(a ’, b ’] and such that ‘t ~n ’’ [a’,b ’] + 0

as n + ~~~. Then the functions

(2.1) X1~ 
~~~ K + 

~ 
and ~~ d~f x + c(~~)

are well-defined and convex for all sufficiently large n. In particular,

for all sufficiently large n , the functions

(2.2) X1~ 
E and x~~

• are log-convex on [a, b] and

(2 .3) x eX 
— (x1~ + x~~) /n.

Proof. Let X1~ and be as given in (2.1) . Then is always

well-defined while X~~(t) makes sense only when < ln 2. Since

+ 0 as n + ~ and vanishes off [a’, b’], it follows that and

• are well-defined for all sufficiently large n. Throughout the remain-

der of this proof , it will be assumed that n has already been chosen so

that is well-defined.

Since K” is a.e. bounded away from zero on [a’, b’], there is a

6 > 0 such that X” > 6 a.e. on [a’, b ’]. Since X’ and X” exist a.e. on

[a, b], X~~ and X~~ (i • 1, 2) exists a.e. and satisfy the following

identities:

• K’ + c’(&4)~ ’~~
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— X” + c ’(A ~)A~ + c”(~~)(~~) 2 .

Since X”(t) > 6 a.e. on [a’, b’) and I I 6~J I  • 0 as n + ~~, it follows

from the continuity of c’ and c” that X~’~(t) > 6/ 2 Ci - 1, 2) for all

sufficiently large n , say n � no. Let n � n0. Thus X~~ is strictly

convex on [a ’, b ’] for n � n0. Also X and X~~ and their derivatives

agree off (a ’, b ’) since vanishes off (a ’, b ’) and c’(O) — 0. It

follows that X~~ (i • 1, 2) are convex on [a, b], and consequently, the

functions Xln and x~ defined in (2.2) are log-convex.

• Final ly,

_ _ _ _ _ _ _  • (exp(X + + exp(X +

— exp {X)(exp £~ + exp c(A~))/2

• x(exp~~~~+ 2 - exp A~)/2

which proves identity (2.3). II

t.
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3. Extreme Points of Convex Subsets of C. Let K be a convex

subset of C. Then clearly

K n  ext C c ext K.

It is of interest to know when there is equality above rather than just

containment ; i.e., when is (3.1) below satisfied?

‘ (3.1) K n e x t C = e x t K.

It is an elementary observation that (3.1) holds when K is an

extremal subset of C. Recal l that a subset of K of convex set C is an

extremal subset of C if x, y a C, 0 C a c 1, and ax + (1 - a)y a K imply

that x , y e K.

In this section, we shall see that condition (3.1) holds for some

subsets K of C which are not extremal subsets .

Lemea 3.1. Let K be a convex subset of C and x0 e K n Ec. Then

x0 4 ext K provided that there exists (i) a set of functions, K1, defined

on (a , b] for which K - K1 n E°, and (ii) a proper subinterval (a’, b ’) . of

1(x0) such that the zero function is not an isciated point of the set

(A £ V(a ’ , b ’]: x0eA and x0e
C
~~ are both in K1).

* Proof. By the hypothesis of the theorem there is a sequence

{A~
} c V(a’, b’] (A ~ 0) such that I IA~I I ~~~ b ’] + 0 and x0e~~ and

• 
-

. 

x0e are both in K1. By Lemma 2.2 for all sufficiently large n, say

A c( A )
n � n0, x0e ~ and x0e are both log-convex and therefore also in C

A c(A~~)
since An vanishes at a. Thus x0e 0 and x0e 0 are in K. Now by

~~~~~~~~~~~~~~ - -~~~—-- .- - -~~~~~~~~~~~~~~~~~
• • •- • • - - —- - .  _  _ _
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• n0identity (2.3), we have x0 (~0e + x0e ‘~ )/2 . This shows that

• x~ ~ ext K since An is not identically zero.
• 0

Theorem 3.2. If the hypothesis of Lemma 3.1 is satisfied for every

x0 a K n EC, then (3.1) holds ; i.e. K n ext C • ext K.

Proof. By Theorem 3.1, exp K c K n ext C , while the reverse inclusion

is obvious. ~
In Examples 1 and 2 below we use Theorem 3.2 to identify the extreme

• points of two interesting convex subsets of C. Two other applications

are given later in the paper. For another interesting application of

importance in statistics, see L3P (1978) .

Example 1. Fix t0 c[a , b] and let K denote the set of all functions

in C whose minimum occurs at t0. Then K is convex and K — K1 n C, where

K1 is the set of functions on (a, bJ whose minimum occurs at t0. Let

x c K n Ec. Then there is an interval (a ’ , b ’] c 1(x) (-~ 
< a’ < b ’ <

such that inf Cx(t) : t £ [a’, b’)} > x(t 0). Notice that to � [a’, b ’].

Choose any sequence {A~} c V(a ’, b ’] (A~ ~ 0) such that I I A
fl h I (a~ ,b ’] ~ 0.

Since I t A n h I Ca~~b ? ]  -~ o as n ~~~~and {A~) c V[a ’ , b ’ ] ,  then sup

(I C(A ~( t ) )I :  t £ (a ’ , b ’]} + 0 as n ~ and and c(A~) vanish off
A (t0) c(A (t0))[a’, b ’]. Since A ( t 0) a o implies that x(t 0)e ~ • x(t~). ~ —

it follows that for all sufficiently large n ,

A~(t)
(3.2) inf(x(t)e t a (a , b) )  a z(t0)

C(A~~(t) )
— inf(x(t)e : t • [a, b]).

• c(A~)
Equivalently, xe and xe are in K1 for all sufficiently large n.

Thuá A 0 is not an isolated point of (A £ V(a ’ , b ’ J :  xe5, ~,
c(A) .~ K1). 

•

Thus the hypothesis of Lemma 3.1 is satisfied for every x a K n Ec, and

thus (3.1) holds by Theorem 3 2 .  
-
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• Example 2. Let K denote the set of all functions in C which are

• decreasing on (a , b3. Then K is convex and K - K1 n C , where K1 is the

set of decreasing functions on [a, b]. Let x £ K n Ec . Since x a we

can choose (a’, b’] c 1(x) such that -• < a’ c b ’ < ~~~. Let {A~} be any

sequence in V[a ’ , b i ,  where ~ 0 and I I A n H [a~~b~] + 0  as n -‘ ~~~. By

Lemma 2.1, there exists an integer n0 such that xe and xc are
A

log-convex for n � n0. Since x is decreasing and since xe and xc
A

are log-convex and agree with x off (a ’ , b ’], it follows that xc ~ and
c(A~)

• xe are decreasing and so are in K1. Thus this sequence

n � n0} c (A £ V(a ’ , b ’ J :  xeA , xe~~:~~ ~ K1), and so A 0 is not an

isolated point of this set . By Theorem 3.2 , (3.1) holds .

Remark. In Example 2 , let a be finite . If b = ~~, it is easy to

see that K is an extremal subset of C , in which case , (3.1) holds by the

remark following (3.1) . However if b c ~~, the above argument does not

hold since in this case K is not an extremal subset of C.

Throughout the remainder of this section , we consider convex subsets

K of C of the form

K — (x a C: L(x) • k } ,

~
t.

where 1. is a linear functional and k is a fixed constant . For L a

continuous linear fun ctional on C[a , b] (i.e., L a  C* (a , b]), we prove

• in Theorem 3.5 that (3.1) holds . The following two lemmas are needed for

the proof of Theorem 3.5.
• Lemma 3.3. Let L be a linear functional on C(a, b], (a’, b’] c [a, b],

A a V(a ’, b’], and x a C. Let L (xe~) • L(x) and sup (A(t) : t a (a ’ , b ’])

a ln 2. Then L(xeC~~ ) • L(x).

_ _ _
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Proof. First note that since A £ V[a ’ , b’] and sup{A(t) : t a [a’, b’]}

• < in 2 , both xeA and xe~~~ are in C(a , b], and consequently both L(xeA)

and L(x c(A) are well- defined. Since L(xeA) L(x) and by the def ini-

• tion of c(’) , e’~~~ = 2 - eA , we conclude that L(xeC~~
)) — 2L(x) - L(xeA)

— L(x) , as was to be- shown. I I

Lemma 3.4. Let L a C*[a l , b ’] (a � a ’ a b’ � b) and x0 e C(a’, b’].

Then (a) there exists a sequence {&~} c C~
2
~(a’, b’] of nonzero functions

• such that I IA~ I (a:b ’] 0 as n+ — , and (b) L(x 0) = (x0e ’~) .

Proof. We know that L(x) = f [a b)X(t)P(dt) 1

• j [a~b ’]~~~t) ~(dt) - f[a I ,b~]
X (t) (dt - J{a~,b Il

X (t
~~~@

t) + ‘f (a t b ~]
X (th((dt)

where i~ X V 0, X~ E -Cx A 0), and where and p ,are the positive and

negative parts given in the Jordan-Hahn decomposition of some fi?~ite

signed measure p defined by L. Thus it is sufficient to prove the theorem

• for x a positive function and p a positive measur~.

For simplicity assume that -both a’ and b ’ are finite. A modification

of the argument given below will hold ‘when a’ and b are not necessarily

finite. Let in • (a ’ + b’)/2. ‘

Case 1. p(a ’ , in) = 0 or p(m, b’] 0. Without loss of generality ,

assume that p(a ’ , in) = 0. Define A~(t) — (in - t) 3(~ - a ’) 3 for a ’ � t � in

and 0 otherwise. Then {A~} satisfies the conditions stated in the~conc1u-

sion of the theorem.

• Cu. 2. p (a’, in) ~. 0 and p(m, b’] > 0. For nonnegative numbers t4

• and N,let

A(t4, N) - M(a ’ - t) 3 for a ’ t � a ,

— N(b ’ - t)
3 for in a t � b ’ ,

• 0 otherwise.

_______ - ~~~~~~~~_I - -—-~
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Consider the function H(M , N) — L(x0e~~
M
~~ ), N, N � 0. Then (i) H is a

• continuous function such that H(O, 0) • L(X&, and (ii) for each M > 0,

Ii(M , N) increases as a function of N from a value less than L(x0) to the

value —. Property (i) follows from the Bounded Convergence theorem,

while Property (ii) follows from the definition of A(M , N) and the fact
-- that both p[a’, a) and p(m, b’] are greater than zero . From these two

i properties, it is easy to see that for each positive integer n there

F I exists a positive integer N~ such that L(l/n, N~) L(x0) and N~ converges

- to zero as n + — . If we let A~ A(l/n , N~)~ the conclusion of the theorem

follows. I I

• Theorem 3.5. Let L a C* [a, b] and k be a fixed constant . Let

H K {x e C: L(x)—kI. Then K is convex and e x t k - K n e x t C.

Proof. Let K1 — {x a C[a, b]: L(x) = k}. Then K - K1 n C and K is

convex since K1 and C are convex. Let x0 a K n Ec . Then there is an

interval (a’, b’] c 1(x0) with -. 
a a ’ a b ’ < .. By Lemma 3.4 , there is

~ a sequence of nonzero functions {A~} c yEa ’, b ’] such that

I ~~ I I  (a’ ,b ~ 
+ 0 as n -‘ — and such that L(x0e~~) — k for each n. By

C(&~)I Lemma 3.3, L(x0e ) • k for each n. Thus A 0 is not an isolated

if I point of (A a V [a’, b’]: x0e
A and x0e~~~ are both in K1). Thus the

hypothesis of Lemma 3.1 is satisfied for every x0 a K n Ec and so

1 ext K • K n ext C by Theorem 3 • 2. I I
Example 3. Let (a, b] be a bounded interval , n a fixed integer

• 

- 

greater than 1, and k a fixed constant. Let

K~~ (xaC: J~t~(dt)— k}.

An integration by parts yields



•1 
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f~t~x(dt) • x(b)b~ - x(a)a
’1 - J~nx(t)t~~

1
~dt.

Thus K • (x a C: L(x) — k}, where L a C*([a, b] is given by

L(x) x(b)b~ - x(a)a” - J~nx(t)t~~
1dt

for each x a C(a, b]. By Theorem 3.5 we conclude that K n ext C — ext K.

~~~~~~~~ Let K be as specified in Examples 1 and 2, let L a C*[a,b),

and let k be a fixed constant. Let - {x a K: L(x) — k} • Kn (x : L(x) • k}.

Then ~ is convex since K is convex and L is linear. Let x a n EC.

Then there is an [a’, b’] c 1(x) with a’ a b’. By Lemmas 3.3 and 3.4 ,

there is a sequence of nonidentica]ly zero functions {A~} c V(a’, b’]
A C(A )

such that Ci) I IA~ I I ral b ~~~ ~‘ 0 as n + , and (ii) L(xe~~) = L(x) — L(xe ‘~ ) .
L ‘ .1

In Examples 1 and 2 the sequence (A~} is an arbitrary sequence satisfying

Ci) . Using the arguments in Examples 1 and 2 and the properties of

given above , we see that A 0 is not an isolated point of (A a V[a’, b]: xe~
and xe~~~ a. ~ both in ~}. Thus the hypothesis of Lemma 3.1 is satisfied

and we conclude that ext K - K fl ext C by Theorem 3.2. I~e note that here

K n (x: L(x) — k) plays the role of K 1 in Lemma 3.1.

4. Proof of the Main Result. We prove Theorem 2.1 by showing that

(i) E c ext C (Lemma 4.1) and (ii) ext C c E (Lemma 4.2).

Leaaa 4.l. E c e x t C.
• Proof. Let x a E. Since C is convex , to prove that x a ext C , it

suffices to prove that

(4.1) x — (x1 + x2)/2, with x1, x2 a C,

implies

(4.2) x1 • x2 • x.

-•---  -.•- --

~~~~~~~



.- - - -- - 
-• -~ - • — - • —~~ 

- — - — -~~
•. - -. — ~~~~~~~~~~~ -•

— 12 -

Thus assume (4.1). We shall show (4.2).

Let to a M (t: and exist at t}. Since m(M’) - 0 and x a

it follows from the definition of E that, for each positive integer n,

P m (Ct0, to + 1/n) n M n {t: r’ 1/n)) 0.

Hence we may choose a sequence {t~) cM such that t~ + to and X”(t~) • 0 ~
• n ~~~~. By a subsequence argument we may also deduce that the sequences

(X~(t )} and (X~(t )) both have limits (possibly infinite). Now using $
the definitions of c, X1, and X2, and using (4 .1) , we can show that

I
(X2 — X)(t~) a c((X~ - X)(t~)). Differentiating twice and taking limits ,
we get H

(4.3) u r n  X~(t~) — c ’((X 1 — X)(t0))(lim Xi(t~
))

+ c”((X1 — X)(t0))(X1(t0) - X’(t0))
2,

since X”(t ) -‘ 0 and t • t0 as n + a and X, X1, X’ , and are continuous
at t0.

Now for t a ln 2, c’( t) = -e5/(2 - at) < 0 and c”(t) _2et/(2 - et)2 a 0.

Hence using the fact that u r n  X~’ (ta) � 0, we see that the expression on
the right of (4.3) is nonpositive . Since the expression on the left of
(4 .3) is nonnegative, it follows that the expression on the right of (4.3)

• is equal to 0. We conclude that X’(t) • X~(t) for all t a H. Reversing

• the roles of and X2 above, we get X’ (t) — X~(t) for t a H. Thus 
•

(4.4) X’ — a a.e on [a, b].

Now since x, x1, and x2 a C, c - x(a) • x1(a) a x2(a), and so, X(a)

a X1(a) • X2(a). It follows from (4.4) that X — - X2, or equivalently,
x .x 1 •x2. I I

_ 
_ _ _  

I
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Lemma 4.2. extCcE.

Proof. It suffices to show that i f x c C a n d x �~~b then x~~~ext C ,

I To prove that x ~ ext C it suffices to show that there exists a1 and x2 a C

such that (x1 +x 2)/2
a x.

Let x a C and x t E. Then there exists an interval [a’, b’) c (a, b)

such that a’ and b’ are continuity points of V and such that X” is a.e.

uniformly bounded away from 0 on [a ’, b ’) . For each n, let

A~(t) • Ct - a’)3(b’ - t)3/n for a ’ � t � b’ and 0 otherwise, Then this

sequence of functions satisfies the hypotheses of Lemma 2.2 and so the

functions ~~~ (i • 1, 2) defined in (2.2) are in C for all sufficiently

large n, say n � n0. Since x a (x1 + x2 ) / 2  by indentity (2.3), a ~ ext C. ~I
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